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Abstract

This report unifies the theoretical and experimental framework for predicting and validating Chladni
patterns on a simply supported steel plate. Beginning with the Kirchhoff-Love plate theory, a modal-
superposition solution that incorporates finite thickness, material damping, and point-force excitation
is derived. The Python implementation constructs stiffness and mass matrices, computes the lowest
eigenpairs, and assembles the steady-state complex displacement field under harmonic driving. Ex-
perimentally, a 24 cmx24 cm steel plate of 0.5 mm thickness is driven by a Pasco SF-9324 mechanical
wave driver at 10 Vpp, while a Tektronix AFG2021 sweeps the frequency from 10Hz to 2kHz in 1 Hz
increments. Nodal patterns are captured with a camera, processed via median filtering, morphological
opening/closing, and skeletonization to extract one-pixel-wide nodal lines.

Pattern matching is performed by sweeping both frequency and plate-scale factors, minimizing
a composite error metric comprised of the mean Euclidean distance from each experimental skeleton
pixel to the nearest theoretical contour and the relative difference in total contour length. Across a
broad range of modes, our model identifies driving frequencies within 1-4% of the measured values,
demonstrating excellent agreement between theory and experiment. We identify challenges at higher
frequencies—dense nodal networks impede global thresholding and skeleton extraction—and propose
future enhancements such as adaptive local thresholding, sub-pixel skeletonization, and exploration of
nonlinear vibration regimes. All code, datasets, and analysis scripts are publicly available on GitHub,
providing a reproducible toolset for modal analysis in acoustics and structural engineering.



1 Introduction

A Chladni plate visually demonstrates standing sound waves by forming patterns with sand particles
on a vibrating surface. These particles collect along the nodal lines of the plate, where the surface
remains stationary. In this study, we develop a mathematical model that incorporates the finite thickness
and material properties of a steel plate to predict these nodal patterns, and we implement this model
in a computational program that generates visualizations to validate our theoretical predictions against
experimental measurements.

2 Background

In the early 1680s, Robert Hooke was the first to notice that spreading flour on a glass plate and drawing
a bow along its edge caused the particles to shift to distinct lines [1]. Building on this, Ernest Chladni for-
malized a technique in 1787 by bowing a metal plate lightly dusted with sand that revealed the stationary
region (nodal lines) were where the grains collected, producing intricate patterns. Chladni’'s demonstra-
tion captivated audiences around the world and established a strong relation between sound and surface
vibration [1].

Today, Chladni’s plates serve both as an engaging classroom demonstration and as a tool in
instruments, where the patterns are used to fine-tune the acoustics of violins and guitars. By visual-
izing standing waves, these experiments laid the conceptual foundation for modern modal analysis in
acoustics and structural engineering [2]. In this project, we will attempt to model Ernest’s finding and
relate them to similar theories like the Kirchhoff-Love plate theory, which deals with the stresses and
deformations in a thin plate subjected to moments.

3 Mathematical Model

This section highlights the fundamental model for describing thin plate vibrations tweaked to describe our
experiment, i.e. the Chladni plate vibrations and patterns. The derivation details the boundary conditions
applied to general thin plate equation to get a modal expansion solution that predicts the nodal patterns
of the Chladni plate.

3.1 Kirchhoff-Love Plate Theory

Thin plate vibrations are modeled from the Kirchhoff-Love plate theory [3]. Under small deflections
and linear elasticity along with Kirchhoff’s kinematic and Love’s extension of bending moments reduces
the three-dimensional elasticity equation to a fourth-order partial differential equation (PDE) aka the
biharmonic equation [4].

3.1.1 Governing Biharmonic Plate Equation

Model a thin, isotropic plate of uniform thickness h and density p under a point load at (zo,y0). The
traverse shear deflection w(x, y, t) satisfies the damped forced biharmonic equation.
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is the flexural rigidity (E = Young’s modulus, » = Poisson ratio), V* = (92 + 97)?, and ¢ a damping
coefficient.
3.1.2 Physical Interpretation

1. Inertia phw: resists plate acceleration.

2. Damping cw: models energy loss (material, air).

3. Bending stiffness DV*w: penalizes curvature of the mid-surface.

4. Forcing Fyd f(t): a point force from the mechanical driver.

3.2 Free-Edge Boundary Conditions

In the model, the plate is held on a narrow support along each of its four edges. Physically, this means
the edge cannot move up or down, but it is free to bend (rotate) about the support line. Mathematically,
two conditions are enforced at every point along each boundary [4].

3.2.1 Zero Deflection

The vertical displacement of the plate is zero where it meets the support. Meaning, the sand rail or ledge
on which the plate rests prevents any traverse motion - sand can only collect if the plate doesn't lift off.

w(z,y,t) =0 for (z,y)on any edge

Equivalently in the frequency domain W (z, y) = 0 along the same boundary.

3.2.2 Zero Bending Moment

The bending moment normal to the edge vanishes. Meaning, a simply supported edge exerts no mo-
ment - there is nothing to resist the plate’s tendency to rotate about the support line. Contrast this with
a clamped edge, which would force both deflection and slope to zero.

Introduce local coordinates at the boundary.

1. n = direction normal to the edge (pointing into the plate)
2. t = direction tangential along the edge

In Kirchhoff-Love theory, the bending moment per unit length normal to the edge is

0w 0w
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Simply supported, M,, = 0 for all boundary points. Written in cartesian form on the edge = = 0 becomes
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3.2.3 Combined Effects

Together, w = 0 and M,, = 0, there is no vertical displacement (sand can rest on the true nodes), and
free rotation (the plate is never rigidly bent at the support). These two conditions select exactly the sine

- product eigenmodes
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Since, those vanish at x = 0, a and y = 0, b and also have zero Laplacian on the edges.

sin (

3.3 Modal Expansion Solution

In this section, the plate’s motion is decomposed into a sum of its natural vibration modes, then re-
assemble a forced, damped response by weighted each mode according to the drive frequency and
damping [5].

3.3.1 Free Vibrating Eigenproblem

Find the plate’s natural modes ®,,,,,(x, y) and their corresponding frequencies w.,.

1. Remove forcing and damping. Set F;, = 0 and ¢ = 0 in the governing equation, and look for time
harmonic solutions

iwt

w(z,y,t) = (z,y)e
2. Biharmonic eigen-equations. Substituting into phi + DV*w = 0 gives:
DV*® = phw’®
3. Impose simply supported edges. On each boundary edge, the boundary conditions mentioned
earlier namely: ® = 0, and VZ® = 0.

4. Separable solutions on rectangle. Assume ®(z,y) = X (x)Y (y). Applying the edge conditions and
the combined mode ®,,,,,(z,y) = X, ()Y, ()

mmv)’ Y.(y) = sin(—m;x) myn=12---

Xm(x) = sin (

5. Eigen frequencies. Each mode solves V4®,,,, = [(mm/a)? + (nm/b)?]? so that

D _mm.,  nmw,

6. Orthogonality and normalization. This orthogonality allows to expand any admissible displacement
field in the basis.

a b
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3.3.2 Steady State & Forced Resonance
Determine the amplitude of each mode when the plate is driven at a single frequency w.

1. Return to full equation. With harmonic forcing Fye'!§(x — 20)d(y — yo) and damping ¢, assume
w(z,y,t) = R{W (x,y)e“!}. The frequency domain equation becomes

(DV* — phw? + icw)W = Fod(x — 20)6(y — yo)



2. Expand in eigenmodes.

W(my) = Z Z Amnq)mn(x»y)

m=1n=1
3. Project onto each mode. Multiply by ®,,,, and integrate over the plate. Using orthogonality yields

for each coefficient.
(_phw2 + icw + phwfnn)Amn = FO(I)mn(-rOa yO)

4. Modal damping ratio. Introduce ¢ = 2(,nwmnph. Then
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3.3.3 Nodal Lines at Resonance
Identify the geometric lines of zero displacement when driving at (or near) a natural frequency.

1. Dominant mode assumption. If w is turned so w ~ w,, and damping is small, the (p,q) term’s
denominator is minimal, so |A4,4| > |A.,| for all other (m,n).

2. Approximate response.
W(z,y) ~ Apq®Ppq(z,y)

3. Definition of nodal lines. Nodal lines are loci where the instantaneous deflection w = R{We“t} =0
for all t. These satisfy ®,,(z,t) = 0, which reduces to

k b
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Sand accumulates along these lines because those are the only places where the plate remains
stationary under vibration, precisely matching the theoretical nodes.

3.4 Chladni’s Equation

The complete forced response for a simply supported plate driven at (z¢, o) and frequency w is given
by the superposition

M N E) sin( mﬂxo) Sin(m)
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sin( 222 sin(252), )
where each term’s numerator measures how strongly the driver couples into mode (m,n), and the
complex denominator encodes resonance de tuning and damping. When w is tuned near a natural
frequency w,,, that single mode dominates and its zeros ®,,,,,(z, y) trace the nodal lines - exactly where
the sand collects.

4 Methodology

This section outlines the equipment and procedure that were taken to collect the experimental data.
Also, discusses any challenges faced during our setup and recommendations for continued research in
the future.



4.1 Experimental Procedure

Figure 1: Experimental Setup

4.1.1 Materials and Equipment
1. Chladni plate: 24cm x 24cm x 0.5mm square steel plate
2. Oscillator: Pasco SF-9324 Mechanical Wave Driver, mounted via BNC cable.

3. Signal Generator: Tektronix AFG2021, set output to 10 Vpp sine wave.

N

. Sand: Simple sand or salt for higher grain

5. Container: Open-top acrylic tray to catch falling sand.

»

. (Optional) Leveling: Adjustable cork block to keep plate horizontal.

4.1.2 Procedure
1. Initial leveling: The plate was adjusted until there was no or minimal surface tilt.
2. Sand application: A sand shaker was used to create a uniform layer of sand.
3. Frequency Sweep: Generator set to 10Vpp, 10Hz. Incremented in 1 Hz steps till 2kHz.
4. Pattern Collection: Once sand patterns form, the frequency and pattern are photographed.

5. Repetition: Each harmonic pattern was recorded in triplicate to verify results.



4.2 Collected Data

Figure 2: Collected Data

4.3 Experimental Challenges & Mitigation

During the experiments, there were several practical issues that required targeted solutions. First, even
plate tilt; due to the oscillator broken base, there was an uneven tilt causing an asymmetric nodal pat-
terns - solved by inserting a cork shim under the driver mount, restoring the plate true horizontal. Sec-
ond, our initial frequency imcrements were too coarse, leading us to skip narrow resonance peaks.
Switching to finer 1Hz steps allows to map almost all harmonics. Finally, continuous operation at high
frequencies (above 500Hz) caused the driver coil to heat up, altering the force constant; adding a minute
cool down ensured thermal stability.

4.4 Future Improvements

Several enhancements could further improve both precision and throughput. First, incorporating a mo-
torized tip-tilt stage would maintain the plate surface within 0.1° of horizontal in real time, eliminating
residual alignment error. Second, testing alternative granular media such as fine flour or metallic pow-
ders could reveal how particle size and shape influence accumulation at nodal lines. Finally, allowing
higher drive amplitudes (above the current 10 Vpp limit) would enable exploration of nonlinear vibration
regimes, potentially uncovering richer pattern dynamics beyond the linear modal framework.

5 Analysis

This section describes how the computational framework pre-processes the pattern images, generates
corresponding theoretical predictions, and then performs an automated pattern-matching procedure to
identify the drive frequency that best reproduces each observed pattern.

The entire framework is hosted on GitHub with detailed instructions to install and perform a
similar computation. Look at Appendix A for a more detailed overview.



5.1

Data Preprocessing & Skeleton Extraction

The analysis begins with converting each experimental image into a streamlined representation of its
nodal lines. This process is implemented in the ChladniPredict class within chladni_predict.py. and
consists of the following steps:

1.

5.1.1

Image Loading and Grayscale Conversion: Raw images are loaded via cv2.imread() and con-
verted to grayscale using cv2.cvtColor (img, cv2.COLOR_BGR2GRAY). This ensures intensity vari-
ations correspond to sand rather than color artifacts.

. Noise Reduction with Median Fitting: A median filter cv2.medianBlur with a kernel size of 5 is

applied to preserve edges and line structures, and isolate any bright or dark pixels.

. Morphological Opening and Closing: The image then undergoes morphological a 7x7 opening and

closing by cv2.morphologyEx. Opening removes small white specks, while closing fills small black
holes with sand lines. Produces clean binary mask of nodal regions.

. Thresholding to Binary Mask: Cleaned grayscale image is thresholded at an intensity of 127 to

produce a binary mask, isolating the region where the sand settled.

. Skeletonization: The mask is skeletonized with skimage .morphology . skeletonize (mask>0). This

reduces each nodal band to a one-pixel-wide curve while preserving connectivity and topology.

. Coordinate Extraction and Mapping: The (rows,columns) indices of each true skeleton pixels

are extracted, then stacked as a map. The map is then converted to a physical (x,y) in meter by
scaling based on initial parameters as given by _map_to_physical (coords, scale, mask.shape)

Formatted Data

Below is an example of how an image is normalized and skeletonized before any quantitative and error
analysis is done. Note that this step is done to all the images prior to running the pattern-matching
algorithm.

5.1.2

Skeleton

Normalized + Skeleton (scale=0.80)

y(m)

Figure 3: Normalized & Extracted Skeleton

Improvements

Adaptive Thresholding: Replace a fixed global threshold with local Otsu or Sauvola methods to handle
even illumination across the plate surface. Contrast Normalization: Apply histogram equalization prior
to thresholding to improve the separation of sand vs plate in low-contrast images. Finally, Sub-pixel



Skeletonization: Integrates geodesic skeleton to recover sub-pixel accurate line positions, improving
subsequent misfit accuracy.

These improvements in the future can guarantee that the extracted skeletons accurately capture
the geometry of the nodal lines, forming the basis for quantitative and error analysis described in later
sections.

5.2 Theoretical Pattern Generation

The theoretical predictions are produced by the ChladniPlate class in chladni_plate.py, Which imple-
ments the modal-superposition model derived in Section 3.

1. Initialization & Driving-frequency loop: An instance of the ChladniPlate is defined with the plate
parameters, and with a driving amplitude, frequency, the nodal contours are computed. Listed
below are the parameters to define a Chladni plate.

Symbol Value Description

a,b 0.24m Plate height & width
h 5.0 x 10~*m Plate thickness

p 7850kg/m?®  Chladni Plate density
E 200 x 10° Pa  Young’s modulus

v 0.30 Poisson ratio

¢ 0.01 Modal damping ratio

Table 1: Physical and numerical parameters used in simulation.

2. Modal superposition & Nodal map: Once a uniform grid is created, the modal expansion solution
(Eq. 3)is used to compute the complex displacement field, whose real part is normalized to [0, 1]
to generate a nodal-likelihood map.

3. Output Interpretation: The X, Y give the physical coordinates in meters on a uniform grid. W is
the steady state complex displacement field - R{We'!}. Lw is the normalized likelihood map for
nodal lines - values near 1 correspond to zero displacement.

5.2.1 Computed Results

Listed below are example outputs when the amplitude is set to 1.0, the location of driving force at the
center of the plate, and a varying frequency.

s Nodl Lines at 900 Hz

Figure 4: Computed theoretical nodal lines
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5.2.2 Improvements

One thing to consider when dealing with this is runtime. Ports the modal loops to PyOpenCL to accelerate
high-resolution sweeps and make use of the system GPU. Adaptive mode truncation: Automatically set
mode_max based on the upper frequency boundary wp.y ~ wWaode max- OF higher-order boundary treatment,
where you implement analytic edge-correction factors to eliminate the need for heuristic tapering.

These are considerably extreme implementations, but should provide a rich basis for subse-
quent frequency matching and error analysis.

5.3 Frequency Matching & Error Metrics

Having extracted the experimental skeleton and theoretical nodal maps, it’s time to pattern match. This
process is implemented in the ChladniPredict class via the run() method, which performs a frequency
sweep and computes error metrics at each trail.

Note that this analysis focuses more on pattern matching rather than frequency matching. As-
suming that the initial parameters and the mathematical model should mach up, then the frequency
should equal the predicted.

5.3.1 Parameter Sweep

1. Frequency and scale array: There are two variable that are altered during the pattern matching
algorithm: frequency and scale. The fregs usually from 50Hz to 1500Hz in 1Hz increments and
scales set to a plate-scale factor from 0.6x to 1.4x at 0.2 increments.

2. Loop Structure: a For each combination (f, s) in cartesian product of frequencies and scales: the
nodal map is simulated at given f, resized to match experimental resolution, and transformed from
skeleton to a physical coordinate system for error analysis.

5.3.2 Error Metrics

At each (f, s), an error score of E(f, s) quantifies the mismatch between theory and observed measure-
ments. The current implementation supports:

1. Mean skeleton-to-contour distance: Average Euclidean distance from each experimental skeleton
pixel to nearest theoretical nodal contour.

2. Percentage error in contour coverage: Relative differences in the total length of nodal lines be-
tween experimental and theoretical skeletons. A weighted sum is also applied and normalized for
comparability.

By minimizing E(f, s) over the given parameters, the code returns the optimal scale s*, frequency f*
and its minimal error E*.

5.3.3 Results & Discussion

In this example, the frequencies are set from 200Hz to 2000Hz at 10Hz increments, and the scale from
0.8x to 1.2x at 0.2 increments.

11



Error Analysis: Adjusted Error vs Frequency per Scale

Skeleton vs Model Contours @ 510 Hz

- skeleton

Adjusted Error (%)

—— scale=0.80 005
—— scale=1.00
— scale=1.20

250 500 750 1000 1250 1500 1750 2000 o0 .
Frequency (Hz) x(m)

(a) Error per frequency & scale (b) Predicted w/ actual

Figure 5: Pattern matching in action

Here the first graph prints out the calculated error for each frequency and scale iteration, and
the minimized E*(f*, s*) is selected, which above is 510 Hz at error rate of 1.2%. However, this was
always the case if some of the other images, since the accuracy of the models solely depends on its
ability to skeletonize most of the data points. For higher frequencies, the Skeletonization process often
left out several points leading to graph that weren’t easily recognized, resulting in a random frequency
and scale selection.

Figure 7: Computed Results

As one may notice, the algorithm tries its best to minimize the error for each pattern. However,

12



as mentioned earlier, with increasing frequencies the ability to skeletonize the nodal patterns gets harder
due to the significant amount of points to consider. This either results in the algorithm overfitting or going
to a default Hz due to the lack of points.

There is another abnormal measurement with the 6th image, which clearly isn’t a circle. After
looking up popular or all Chladni patterns, there wasn’t one with the same form as the 6th image. This
leads one to guess that maybe the mathematical model itself wasn’t able to derive the pattern, which is
why it wasn’t able to pattern match this one case.

But, apart from these two issues, the algorithm does seem to do a good job in terms of accu-
rately predicting the correct frequency responsible for a certain pattern.

5.4 Manual Analysis

One particular note of interest is that it would be potentially preferable metric to just compare the simi-
larity between the theoretically generated nodal lines and experimental data manually i.e. visually. The
reason why is to lies in the complex nature of these harmonic forms; although highly self-symmetric,
they contain alot of broad structure that are far easier to quantify and identify by eyes as opposed to
with code. Furthermore, due to the small sample set, it would been fairly feasible task to check these
comparisons. However, if one were to scale this project for large-scale structural similarities, and to have
a robust error metric, then this study should satisfy that.

6 Conclusion

This work has developed and validated a comprehensive framework for modeling, simulating, and ex-
perimentally reproducing Chladni patterns on a simply supported steel plate. By extending the classical
Kirchhoff-Love plate theory to include finite thickness, material damping, and point-force excitation, we
derived a modal-superposition solution (Eq. 3) that accurately predicts the nodal line geometries.

The ChladniPlate and ChladniPredict implementations enabled automated generation of
theoretical nodal maps and skeleton-based pattern matching against experimental images collected over
a 10Hz—-2kHz sweep. For the majority of patterns, the algorithm identified the driving frequency within
1-4% error, demonstrating strong agreement between theory and experiment. The principal limitations
arose at higher frequencies, where dense nodal networks challenged the global thresholding and skele-
tonization routines, occasionally leading to misclassifications or convergence to default frequencies. To
address these issues, future work will explore adaptive local thresholding, sub-pixel skeleton extraction,
and the inclusion of nonlinear vibrational regimes and alternative granular media. Overall, this study
confirms the efficacy of the modal-superposition approach for visualizing and quantifying standing-wave
phenomena in plates and lays the groundwork for more advanced structural and acoustic analyses.
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Appendix

Appendix A: Algorithm & Code Listings

A.1 GitHub Repository
The full implementation, datasets, and scripts are available under the GPL-3.0 license at:

+ CuriousAvenger/pyChladniPlate

A.2 Repository Structure & Key Scripts
The project is organized as follows:

pyChladniPlate/

chladni_plate.py Core modal-superposition solver

chladni_predict.py Image preprocessing & pattern-matching pipeline

lab_dataset/ # Raw experimental images
lab_results/ # Output images & data from sweeps
.gitignore # Files to ignore in Git
LICENSE # GPL-3.0 license
README . md # Installation, usage, and API overview
#
#
#

main.py Example entry-point: runs full workflow

A.3 Core Source Code

Below are the primary code modules and classes responsible for defining a Chladni plate and running
the pattern matching algorithm.

A.3.1 chladni_plate.py Implements the ChladniPlate class, which uses NumPy for computing grid
coordinates (X,Y"), complex field W. and normalized nodal-likelihood W.

A.3.2 chladni_predict.py Defines the ChladniPredict class, executes the full pipeline (skeleton ex-
traction, frequency/scale sweep, error adjustment) and returns the optimal i.e. minimal E*(f*, s*). Plots
adjusted error vs frequency for each scale. Displays (1) normalized grayscale + skeleton overlay, and
(2) physical overlay of skeleton vs theoretical contours at predicted frequency.

A.3.3 main.py Demonstrates usage: initializes plate parameters, defines frequency/scale sweeps, runs
prediction, and visualizes results with Matplotlib’s contour functions.
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